Indian Statistical Institute Bangalore Centre B.Math Third Year 2017-2018 Second Semester Semestral Examination ## Statistics IV Answer as much as you can. The maximum you can score is 120. The notation used have their usual meaning unless stated otherwise. Time: - 3 hours - 1. Consider a study with three categorical variables X, Y and Z in which X and Y takes two values while Z takes K values. - (a) Define conditional odds ratio θ_k^{XY} , $1 \le k \le K$. - (b) Show that each of the following is a sufficient condition for θ_k^{XY} being independent of k. - (i) X is conditionally independent of Z, given Y. - (ii) Y is conditionally independent of Z, given X. $[3 + 4 \times 2 = 11]$ Date: 9.5.18 2. Suppose $X = (X_1, \dots, X_k)'$ follows multinomial distribution with parameters (n, π_1, \dots, π_k) . Let $$V = (V_1, \dots V_k)', \ V_i = (X_i - n\pi_i)/\sqrt{n\pi_i}.$$ - (a) Consider a $t \times k$ matrix $B, t \leq k$. Find the asymptotic distribution of B'V, as $n \to \infty$. - (b) Suppose each π_i is a function of $\theta_1, \dots \theta_q, q < k$. Let $M = ((M_{ij})), m_{ij} = (\sqrt{\pi_i})^{-1} \frac{\partial \pi_i}{\partial \theta_j}$. Show that the information matrix of the θ vector is = nM'M. [Recall that the (s, t)th element of the information matrix is $$E\left[\frac{\partial log(f(x,\theta))}{\partial \theta_s} \frac{\partial log(f(x,\theta))}{\partial \theta_t}\right]$$ [8 + 8 = 16] - 3. Suppose $X_1, \dots X_n$ is a random sample from a continuous distribution with median θ . Let R_i^a be the rank of $|X_i|$ and $T^+ = \sum_{X_i > 0} R_i^a$. Let $W_{ij} = (1/2)(X_i + X_j), 1 \le i \le j \le n$. - (a) Show that if $\theta = 0$, the distribution of T^+ is symmetric about n(n+1)/4. - (b) Suppose $\theta = 0$. Let W^+ denote the number of positive W_{ij} 's. Show that $W^+ = T^+$, provided (i) $X_i \neq 0$ and (ii) $|X_i| \neq |X_j|, j \neq i, i, j = 1, \dots, n$. - (c) Show how you can find a confidence interval for θ using W_{ij} 's. - (d) Show that the median of the W_{ij} 's is a reasonable point estimator of θ . [4+7+8+8=27] - 4. (a) When is a decision rule said to be admissible? - (b) Define a minimal complete class. Show that if a minimal complete class exists, then it consists exactly of the admissible rules. [3 + (3 + 6) = 12] - 5. Consider a subset S of a k-dimensional Euclidean space. - (a) When is S said to be bounded from below? What is the lower boundary of S? When is S said to be closed from below? - (b) State a condition on S which implies that the lower boundary of S is not empty; proof is not required. [(3+4+2)+3=12] - 6. (a) Define (i) a minimax decision rule and (ii) a Bayes' decision rule w.r.t. a prior distribution π . - (b) In the following statement fill in the blank with one of the given words. Justify your answer. "If the loss function $L(\theta, a)$ is $(\theta - a)^2$, then an unbiased estimator is - the Bayes' rule." (i) always, (ii) often, (iii) sometimes, (iv) rarely, (v) never. [Hint: State and prove a result and provide an example supporting your answer. State clearly the properties that you use, without proof.] $[(3 \times 2) + (2 + 9 + 3) = 20]$ - 7. Consider a decision problem. Let D denote the class of all randomized decision rules and Π the class of all prior distributions of $\theta \in \Theta$. - (a) Define a least favorable prior distribution for the problem. - (b) Show that for every decision rule $\delta \in D$ the following holds. $$\sup_{\pi \in \Pi} r(\pi, \delta) = \sup_{\theta \in \Theta} R(\theta, \delta).$$ - (c) Suppose Θ is finite and the risk set is bounded from below. - (i) Show that the following relation holds and there exists a least favorable distribution π_0 . $$\inf_{\delta \in D} \sup_{\pi \in \Pi} r(\pi, \delta) = \sup_{\pi \in \Pi} \inf_{\delta \in D} r(\pi, \delta) = V. \tag{1}$$ - (ii) Suppose further the risk set is closed from below. Then there exists a minimax rule δ_0 , which is Bayes'w.r.t. π_0 . - (d) (i) Define a lower semicontinuous function. - (ii) Suppose Θ is infinite and D satisfies the following conditions. - (Ai) D has a compact subset C, which is essentially complete. - (Aii) $R(\theta, \delta)$ is lower semicontinuous in $\delta \in C$, for all $\theta \in \Theta$. Then show that the relation in (1) holds and a minimax rule exists. [State clearly the properties of lower semicontinuous functions and all other results of analysis that you use]. [3+5+(10+10)+(3+7)=38]