Indian Statistical Institute Bangalore Centre B.Math Third Year 2017-2018 Second Semester

Semestral Examination

Statistics IV

Answer as much as you can. The maximum you can score is 120. The notation used have their usual meaning unless stated otherwise.

Time: - 3 hours

- 1. Consider a study with three categorical variables X, Y and Z in which X and Y takes two values while Z takes K values.
 - (a) Define conditional odds ratio θ_k^{XY} , $1 \le k \le K$.
 - (b) Show that each of the following is a sufficient condition for θ_k^{XY} being independent of k.
 - (i) X is conditionally independent of Z, given Y.
 - (ii) Y is conditionally independent of Z, given X.

 $[3 + 4 \times 2 = 11]$

Date: 9.5.18

2. Suppose $X = (X_1, \dots, X_k)'$ follows multinomial distribution with parameters (n, π_1, \dots, π_k) . Let

$$V = (V_1, \dots V_k)', \ V_i = (X_i - n\pi_i)/\sqrt{n\pi_i}.$$

- (a) Consider a $t \times k$ matrix $B, t \leq k$. Find the asymptotic distribution of B'V, as $n \to \infty$.
- (b) Suppose each π_i is a function of $\theta_1, \dots \theta_q, q < k$. Let $M = ((M_{ij})), m_{ij} = (\sqrt{\pi_i})^{-1} \frac{\partial \pi_i}{\partial \theta_j}$. Show that the information matrix of the θ vector is = nM'M.

[Recall that the (s, t)th element of the information matrix is

$$E\left[\frac{\partial log(f(x,\theta))}{\partial \theta_s} \frac{\partial log(f(x,\theta))}{\partial \theta_t}\right]$$

[8 + 8 = 16]

- 3. Suppose $X_1, \dots X_n$ is a random sample from a continuous distribution with median θ . Let R_i^a be the rank of $|X_i|$ and $T^+ = \sum_{X_i > 0} R_i^a$. Let $W_{ij} = (1/2)(X_i + X_j), 1 \le i \le j \le n$.
 - (a) Show that if $\theta = 0$, the distribution of T^+ is symmetric about n(n+1)/4.
 - (b) Suppose $\theta = 0$. Let W^+ denote the number of positive W_{ij} 's. Show that $W^+ = T^+$, provided (i) $X_i \neq 0$ and (ii) $|X_i| \neq |X_j|, j \neq i, i, j = 1, \dots, n$.
 - (c) Show how you can find a confidence interval for θ using W_{ij} 's.
 - (d) Show that the median of the W_{ij} 's is a reasonable point estimator of θ . [4+7+8+8=27]

- 4. (a) When is a decision rule said to be admissible?
 - (b) Define a minimal complete class. Show that if a minimal complete class exists, then it consists exactly of the admissible rules. [3 + (3 + 6) = 12]
- 5. Consider a subset S of a k-dimensional Euclidean space.
 - (a) When is S said to be bounded from below? What is the lower boundary of S? When is S said to be closed from below?
 - (b) State a condition on S which implies that the lower boundary of S is not empty; proof is not required. [(3+4+2)+3=12]
- 6. (a) Define (i) a minimax decision rule and (ii) a Bayes' decision rule w.r.t. a prior distribution π .
 - (b) In the following statement fill in the blank with one of the given words. Justify your answer.

"If the loss function $L(\theta, a)$ is $(\theta - a)^2$, then an unbiased estimator is - the Bayes' rule."

(i) always, (ii) often, (iii) sometimes, (iv) rarely, (v) never.

[Hint: State and prove a result and provide an example supporting your answer. State clearly the properties that you use, without proof.] $[(3 \times 2) + (2 + 9 + 3) = 20]$

- 7. Consider a decision problem. Let D denote the class of all randomized decision rules and Π the class of all prior distributions of $\theta \in \Theta$.
 - (a) Define a least favorable prior distribution for the problem.
 - (b) Show that for every decision rule $\delta \in D$ the following holds.

$$\sup_{\pi \in \Pi} r(\pi, \delta) = \sup_{\theta \in \Theta} R(\theta, \delta).$$

- (c) Suppose Θ is finite and the risk set is bounded from below.
- (i) Show that the following relation holds and there exists a least favorable distribution π_0 .

$$\inf_{\delta \in D} \sup_{\pi \in \Pi} r(\pi, \delta) = \sup_{\pi \in \Pi} \inf_{\delta \in D} r(\pi, \delta) = V. \tag{1}$$

- (ii) Suppose further the risk set is closed from below. Then there exists a minimax rule δ_0 , which is Bayes'w.r.t. π_0 .
- (d) (i) Define a lower semicontinuous function.
- (ii) Suppose Θ is infinite and D satisfies the following conditions.
- (Ai) D has a compact subset C, which is essentially complete.
- (Aii) $R(\theta, \delta)$ is lower semicontinuous in $\delta \in C$, for all $\theta \in \Theta$.

Then show that the relation in (1) holds and a minimax rule exists.

[State clearly the properties of lower semicontinuous functions and all other results of analysis that you use]. [3+5+(10+10)+(3+7)=38]